LMRL 2021 Accepted Posters
Poster images are linked below.

Poster Number Poster Room Title Authors
1 A Assessing the importance of diagnostic information in learning low-dimensional embedding of high-dimensional abnormal neural correlates Wenjun Bai, Tomoki Tokuda, Okito Yamashita, Junichiro Yoshimoto
2 A Protein embeddings and deep learning predict binding residues for various ligand classes Maria Littmann, Michael Heinzinger, Christian Dallago, Konstantin Weissenow, Burkhard Rost
3 A Optimal Design of Stochastic DNA Synthesis Protocols Based on Generative Sequence Models (video) Eli N Weinstein, Alan Nawzad Amin, Will Sussman Grathwohl, Daniel Kassler, Jean Disset, Debora Susan Marks
4 A Benchmarking deep generative models for diverse antibody sequence design Igor Melnyk, Payel Das, Vijil Chenthamarakshan, Aurelie Lozano
5 A Scalable estimation of microbial co-occurrence networks with Variational Autoencoders (video) James Morton, Justin Silverman, Gleb Tikhonov, Harri Lähdesmäki, Richard Bonneau
6 A CytoImageNet: A large-scale pretraining dataset for bioimage transfer learning (video) Stanley Bryan Zamora Hua, Alex Xijie Lu, Alan Moses
7 A Elucidation of proteasomal cleavage patterns from HLA peptidome data through deep learning Emilio Dorigatti, Julian Arnold, Bernd Bischl, Benjamin Schubert
8 A Bidirection Prediction Model for Transcriptomics and Proteomics Tianyu Liu, Yuge Wang, Hongyu Zhao
9 A AugmentedPCA: A Python Package of Supervised and Adversarial Linear Factor Models William E Carson IV, Austin Talbot, David Carlson
10 A A Graph Neural Network Approach to Molecule Carcinogenicity Prediction (video) Philip Fradkin, Adamo Young, Lazar Atanackovic, Leo J Lee, Brendan Frey, BO WANG
11 A Organ Source Prediction for Exosomal Proteomics via Protein Language Models Xinbo Wu, Alexandru Hanganu, Ayuko Hoshino, Lav R. Varshney
12 A Enhancing the affinity of protein-protein interactions by multiple amino acid mutations predicted by deep neural networks Reut Moshe, Niv Papo, Yaron Orenstein
13 A Towards data-driven design of context-specific regulatory elements (video) Peter Bromley, Wouter Meuleman
14 A Learning a representation of cellular morphology: unsupervised deep learning for shape and texture characterization of cells in EM data (video) Valentyna Zinchenko, Johannes Hugger, Virginie Uhlmann, Detlev Arendt, Anna Kreshuk
15 A Machine learning for novel antibiotic candidate domains - conjugated oligoelectrolytes Armi Tiihonen, Sarah J Cox-Vazquez, Guillermo Bazan, Tonio Buonassisi
16 A Bayesian nonparametric strategies for power maximization in rare variants association studies (video) Lorenzo Masoero, Joshua Schraiber, Tamara Broderick
17 B Deep Generative Modeling of Transcription Factor-Gene Expression Relationships Byunguk Kang, Daniel Y. Zhu, William Souillard-Mandar, Hattie Chung, Fei Chen
18 B TeraTox empowers preclinical teratogenicity assessment with stem cells, sequencing, and explainable machine learning (video) Jitao David Zhang, Manuela Jaklin, Nicole Schäfer, Nicole Clemann, Paul Barrow, Erich Küng, Lisa Sach-Peltason, Claudia McGinnis, Marcel Leist, Stefan Kustermann
19 B Optimal Design of Experiments for Simulation Based Inference of Mechanistic Acyclic Biological Networks (video) Vincent Zaballa, Elliot Hui
20 B Protein Organization with Manifold Exploration and Spectral Clustering Shahab Shams, Geoffroy Dubourg-Felonneau, Eyal Akiva, Lawrence Lee
21 B Towards Remote Protein Homology Detection: Pairwise Alignment Using Locally Enriched Transformers Siva Muthupalaniappan, Sean R Eddy, Sam Petti
22 B A Bayesian nonparametric model for aligning spatial gene expression data (video) Andrew Jones, F. William Townes, Didong Li, Barbara Engelhardt
23 B Leveraging Adversarial Reprogramming for Template-Constrained Protein Sequence Design Devleena Das, Inkit Padhi, Payel Das, Pin-Yu Chen, Amit Dhurandhar
24 C Deep Unsupervised Learning for Biosynthetic Gene Cluster Characterization (video) Carolina Rios-Martinez, Nick Bhattacharya, Ava P. Soleimany, Lorin Crawford, Kevin K Yang
25 B Prediction of cell-cell communication directly from scRNA-seq latent spaces (video) Tessa Durakis Green, Linus J Schumacher, Debora Susan Marks, Chris Sander
26 B InterDocker: End-to-End Cross-Attentive and Geometric Transformers for Efficient Iterative Protein Docking Allan Dos Santos Costa, Manvitha Ponnapati, Eric Alcaide, Kalyan Palepu, Suhaas M Bhat, Pranam Chaterjee, JOSEPH JACOBSON, Iddo Drori
27 B Prediction and design of biological sequences combining evolutionary sequence data with sparse labels (video) Ada Shaw, Jung-Eun Shin, Debora Susan Marks
28 B Modeling gene regulatory network dynamics in tumor through graph embedding alignment (video) Hao Chen, Xiong Liu, Joseph Xu Zhou
29 B ProGSNN: Deep Multi-Scale Protein Representation Learning using Geometric Scattering Egbert Castro, Dhananjay Bhaskar, Jackson Grady, Smita Krishnaswamy
30 B cov2vec: encoding the genomic manifold of 2+ million SARS CoV2 viral sequences with protein language models. (video) Salvatore Loguercio
31 B Protein language model embeddings for fast, accurate, alignment-free protein structure prediction Konstantin Weißenow, Michael Heinzinger, Burkhard Rost
32 B A generative model of the human proteome using across-species and within-species sequence data Jonathan Frazer, Mafalda Dias, Rose Orenbuch, Nikki Thadani, Kelly Brock
33 C MassFormer: Tandem Mass Spectrum Prediction with Graph Transformers (video) Adamo Young, Bo Wang, Hannes Röst
34 C Prediction of cell-cell communication in scRNA-seq latent spaces (video) Tessa Durakis Green, Linus J Schumacher, Debora Susan Marks, Chris Sander
35 C Similarity Neural Networks for RBP Binding Site Detection Sepideh Saran, Mahsa Ghanbari, Uwe Ohler
36 C Joint embedding of sequence features (texts) and function labels (graphs) for protein function prediction Yue Cao, Yang Shen
37 C Self-Supervised Vision Transformers Learn Disentangled Representations in Histopathology Richard J. Chen, Rahul G Krishnan
38 C Contrastive VAE models to identify independent disease mechanisms in single-cell data (video) Atanasiu Demian, Harry Rose, Sam Abujudeh, Meltem Gurel
39 C Benchmarking algorithms to identify clinically-relevant sub-populations of patients (video) Manuela Salvucci, Meltem Gürel, Sam Abujudeh, Marika Catapano, Gregor Lueg, Matyas Korom, Manav Leslie, Peter McErlean, Francesca Mulas
40 C Interpretable graph representation learning for lectin-glycan binding (video) Joyce An, Somesh Mohapatra, Omar A Santiago-Reyes, Daria E Kim, Laura Kiessling, Rafael Gomez-Bombarelli
41 C Vaccine Design using Machine Learning of Human Degrons (video) Somesh Mohapatra, Nicholas L Truex, Mariane Bandeira Melo, Na Li, Wuhbet D Abraham, Jacob Joshua Lee Rodriguez, Darrell J Irvine, Bradley Pentelute, Rafael Gomez-Bombarelli
42 C Mapping Biology With a Unified Representation Space for Genomic and Chemical Perturbations to Enable Accelerated Drug Discovery (video) Aurora S Blucher, Safiye Celik, James Douglas Jensen, James Taylor, Michael F Cuccarese, Jacob C Cooper, Jacob M Rinaldi, Carl Brooks, Michael A Statnick, Marta Fay, Nathan Lazar, Berton Earnshaw, Imran S Haque
43 C Simultaneous CUT&Tag profiling of the accessible and silenced regulome in single cells (video) Derek H. Janssens, Dominik Jenz Otto, Michael P. Meers, Kami Ahmad, Manu Setty, Steven Henikoff
44 C Rarity: a framework for the discovery of putative rare cell populations from single-cell imaging data Kaspar Märtens, Michele Bortolomeazzi, Francesca Ciccarelli, Christopher Yau